
Do contexto ao
desenvolvimento
Primeiro vamos entender como é estruturada a rede,
como ela surgiu, e como sua estrutura única se
comporta.

SUI: Uma nova abordagem

Ex-engenheiros
do
Facebook/Meta
(Diem project)

Co-fundadores

Mainnet em maio
de 2023

Lançamento

Narwhal &
Bullshark (sem
blocos
tradicionais)

Consenso

A Sui utiliza a
linguagem de
programação
Move, criada
originalmente
para ela

Linguagem

Equipe: Ex-engenheiros Microsoft,
Apple, VMware

Objetivo: Moeda digital para 3+
bilhões de usuários

Problema: Linguagens existentes
inadequadas para assets digitais

2018-2019:

Meta Diem Project

2019-2020:

Design e Implementação
Lead: Sam Blackshear (PHD
Carnegie Mellon)

Co-lead: Evan Cheng (LLVM
Creator, Apple)

Inspiração: Rust ownership +
Linear types

2022:

Open source e Sui

Meta abandona Diem

Equipe forma Mysten Labs

Move adaptado para Sui
blockchain

Problemas das blockchains tradicionais

Escalabilidade

Ethereum ~15 TPS

Bitcoin ~7 TPS

Gas fees podem
passar de $50

Custos elevados

Transações lentas e
complexas

Experiencia do
 usuário

Solidity tem
limitações de

segurança

Programação
 complexa

Arquitetura única da SUI

Tudo é um objeto com ID único

Objetos têm propriedades (owned, shared, immutable)

Transações paralelas quando não há conflito

Resultado: Até 297,000 TPS em testes

Object-Centric Model

Abordagem orientada a Objetos

Principais características de um Objeto:

Identificação única
Propriedade (Ownership)
Controle de Acesso

Tipos de Propriedade (ownership)
O encapsulamento da SUI impõe uma propriedade para evitar cópias não autorizadas

Propriedade exclusiva
(Address- Owned)

O objeto só pode ser
alterado pelo seu
proprietário

Objetos compartilhados
(Shared)

São mutáveis por
qualquer pessoa, mas
exigem consenso para a
alteração

Objetos Imutáveis
(Immutable)

Não podem ser alterados
após criação

Move Language: Por que é especial?

Resource-or
iented

Ativos digitais são
"resources" que
não podem ser

copiados

Previne bugs como
double-spending
automaticamente

Linear types

Código pode ser
matematicamente

provado

Formal
Verification

Por design da
linguagem

Ausência de
reentrancy
attacks

Características principais

Comparação com outras linguagens

Característica Ethereum Solana Sui

TPS ~15 ~3000 297,000+

Finalidade ~13min ~13s <1s

Linguagem Solidity Rust/C Move

Gas fees Alto Baixo Muito baixo

Paralelização Não Limitada Completa

Casos de uso ideais

Gaming

NFTs e
in-game
assets com
alta
performance

Trading de
alta

frequência
com baixas

taxas

DeFi

Apps com
muitas

interações
simultâneas

Social

Micropagam
entos e

dados de
sensores

Iot

Onde a Sui brilha

Aplicações
corporativas
que precisam
de
throughput

Enterprise

Com isso vemos uma nova
forma de programar smart
contracts com escalabilidade e
segurança de ponta a ponta

Move: Dos conceitos
ao Deploy
Primeiro vamos entender como é estruturada a rede,
como ela surgiu, e como sua estrutura única se
comporta.

Conceito de Pacote
O que é um Pacote?

Um pacote é a unidade de deploy na SUI. Ele é como um "projeto" completo, que contém
todos os arquivos e configurações necessários.

No arquivo Move.toml

Para que serve?

Ele é o arquivo de configuração principal, contendo o nome do projeto,
dependências e endereços de deploy. É similar ao package.json no Node.js.

Onde o definimos?

Conceito de Módulo
O que é um módulo em Move?

É a unidade fundamental de código em Move. É a nossa caixinha que armazena todo nosso
contrato inteligente.

Onde o criamos?

Cada módulo é um arquivo separado, geralmente dentro da pasta source do seu pacote.

Para que serve?

Os módulos definem as estruturas (structs) dos seus objetos e as funções que operam
sobre eles. Eles ajudam a organizar o projeto de forma lógica e segura.

Conceito de Structs
O que é um módulo em Move?

É a unidade fundamental de código em Move. É o nosso cabeça dos smart-contracts.

Onde o criamos?

Cada módulo é um arquivo separado, geralmente dentro da pasta source do seu pacote.

Para que serve?

Os módulos definem as estruturas (structs) dos seus objetos e as funções que operam
sobre eles. Eles ajudam a organizar o projeto de forma lógica e segura.

Abilities
Copy

O valor pode ser
copiado.

Drop

O valor pode ser
descartado
(destruído) no
final de um
escopo.

Store

O valor pode ser
armazenado
dentro de outras
Structs.

O valor pode ser
usado como
uma chave de
recurso global;
no Sui, torna a
Struct um
Objeto.

Key

Entry Functions
O que são?

● São funções que servem como pontos de entrada para um contrato
● Elas são chamáveis diretamente a partir de transações

Para que servem as Entry Functions?

● Implementam a lógica de negócios on-chain
● São usadas em PTBs (Programmable Transaction Blocks) para operações

atômicas

Linguagem Move
Qualidade

- Extremamente Segura
- Flexível
- Focada em Smart

Contracts

- Move gerencia ativos
com segurança

- Bloqueio de
reentrância eficiente

- Sua estrutura previne
vulnerabilidades
comuns

Orientada a Recursos Uso na SUI

- Controla objetos on-chain,
garantindo gerenciamento
de dados eficiente e seguro

- Permite definir estruturas e
funções para a organização
do seu contrato inteligente

Momento mão
na massa
Vamos codificar agora nosso primeiro smart contract
em move abordando os conceitos de base que vimos
anteriormente

sui client

https://github.com/SilvaCleverson/bootcampSui/tree/main/sui-one-click
-installer

Escaneie o QR-Code a seguir para ter
acesso ao repositorio do nosso material
oficial e vamos codar juntos nossos
primeiros contratos em move

Construindo um
Dapp na Sui
Entender o processo de construção de dApps no Sui,
incluindo desenvolvimento de contratos inteligentes,
integração front-end e conectividade de carteira.

Agenda
1. Conectando Front-End aos

Contratos Inteligentes do Sui
2. Integração de Carteira
3. Construindo um App de

Cunhagem de NFT
4. Construindo um App DeFi Básico
5. Exercícios Práticos

Conectando Front-End aos
Contratos Inteligentes do Sui
Sui TypeScript SDK

- Interação blockchain
de baixo nível

- Chamar funções de
contrato inteligente

- SuiClientProvider
para rede

- WalletProvider para
gerenciamento de
carteira

- ConnectButton para
login do usuário

dApp Kit for React Exemplos de Uso

Envolver app com
provedores; usar
ConnectButton; obter
endereço da carteira

Pré requisitos
Node.js Instalação das

Ferramentas (os SDKs)
Download and
install Node.js @mysten/dapp-kit

@mysten/sui

@tanstack/react-query

https://nodejs.org/en/download/
https://nodejs.org/en/download/

Integração de Wallet

Wallet Role
Sign transactions,
manage user assets

Uso do dApp Kit

Assinar transações,
gerenciar ativos do
usuário

Developer Tip
Acessar informações da
carteira com o hook
useCurrentAccount

Construindo um App de
Mintagem de NFT

Smart Contract
Definir struct NFT com
atributos key e store

Mint Function
Transferir NFT
recém-criado para o
remetente

Front-End
Usar SDK/dApp Kit para
chamar mint com
metadados

*Código de exemplo disponível para implementações Move e JavaScript.

Creando um app DeFi básico

Contrato
Inteligente de Pool
de Empréstimos

- Definir struct do pool
de empréstimos

- Funções de depósito,
empréstimo e
pagamento

- Tratamento de juros
incluído

Front-End
Interface
- Página de depósito

SUI
- Pedir emprestado

usando garantia
- Página de pagamento

de empréstimo

SDK
Integration
- Invocar funções de

contrato a partir da UI

Otimizando Integração Front-End

Usar hooks para
gerenciamento de estado e
conta

React Hooks

Envolver app com
provedores SuiClient e
Wallet

Envolvimento de
Provedor

User Experience

Mostrar status de conexão da
carteira e tratamento de erros

Exercícios Práticos

Código Move para struct NFT, Typescript para
chamada de mint do front-end

Criando um app de Mintagem de NFT

Usando SDK: Chamar funções de contrato inteligente
do front-end para depósitos, empréstimos,
pagamentos

Construindo um app Defi básico

(https://mirror.xyz/greymate.eth/_P2NXvVoh9wISj_mqgavDymIERCnW2DgC1gigJNrmUI)

(https://docs.sui.io/guides/developer/app-examples)

Features
Avançadas
Aprender como construir IA no Sui e interagir com
contratos inteligentes, experiência simples de
integração com login ZK e Transação Patrocinada

Agenda

1. Como o zkLogin Funciona
2. Transações Patrocinadas -

Gerenciamento de Taxas de Gas
3. Oráculos do Sui - Trazendo Dados

Off-Chain para On-Chain
4. Pontes Cross-Chain no Sui
5. Construindo Agentes de IA

Autônomos no Sui
6. Exercícios Práticos

Como zkLogin Funciona

Login do usuario

Autenticação com login do
Google ou facebook

Verificação de
identidade sem mostrar
informações do usuário

Preservação de
privacidade

Geração de provas

Criar zkProofs usando JWT e
salt para segurança de conta

Fazer login em dApps do Sui com credenciais web familiares e privacidade
via provas de conhecimento zero.

https://docs.sui.io/concepts/cryptography/zklogin

https://docs.sui.io/concepts/cryptography/zklogin

Possibilidade de reutilizar
metodos existentes

Fluxo de login familiar com
Google OAuth/OpenID
Connect

Toda transação requer sua
aprovação, mas de forma
simplificada.

- Como Identificar o usuário de forma persistente?

- address = H(sub, iss, aud)

- Como assinar uma transação?

 - Gerar um par de chaves efêmeras: sk, pk

 - Inserir pk dentro do nonce

 - Usar sk para assinar as transações

Fluxo ZKLogin

Exercício — Integração zkLogin
Sua tarefa: complete o
handler login.ts. Use
@googleapis/oauth2 para
autenticar e o helper
generateZkProof do
@sui/sui.js.

Exemplo:
https://docs.sui.io/guides/developer/cryptography/zklogin-int
egration/zklogin-example

https://docs.sui.io/guides/developer/cryptography/zklogin-integration/zklogin-example
https://docs.sui.io/guides/developer/cryptography/zklogin-integration/zklogin-example

Transações Patrocinadas -
Gerenciamento de Taxas de Gas

Gas Sponsorship
Roles
Usuário, Estação de Gas,
Patrocinador gerenciam
taxas de forma
transparente

Service Example

A Estação de Gas da
Shinami simplifica o
patrocínio de
pagamentos de gas

Use Case
dApps de jogos
patrocinam transações
iniciais para impulsionar
usuários

(https://blog.sui.io/shinami-gas-station-tutorial/)

https://blog.sui.io/shinami-gas-station-tutorial/

Exercício — Seja sponsor de sua
primeira TX

Oráculos do Sui - Trazendo
Dados Off-Chain para On-Chain

Oráculos Disponíveis

- Chainlink
- Band protocol
- Mysten Labsʼ simple e

meta oracles

Guias para construir oráculos
com alto rendimento do Sui

Ferramentas do
desenvolvedor

https://docs.sui.io/guides/developer/app-examples/weather-oracle#initialize-the-project
https://github.com/pentagonxyz/move-oracles

https://docs.sui.io/guides/developer/app-examples/weather-oracle#initialize-the-project
https://github.com/pentagonxyz/move-oracles

Requisitos: fazer post API http://localhost:8080/price?symbol=ETH/USD, analisar o JSON em seu
script Node, então chamar a função submit_price do seu contrato oracle Move

Exercício — Feed de Preços On-Chain

Pontes Cross-Chain no Sui -
interoperabilidade

Sui Bridge (Ponte Nativa)
- Ativos : ETH, WETH, USDT, WBTC, LBTC
- Mecanismo: Modelo Lock e mint.

https://bridge.sui.io/

Outras Pontes
https://wormhole.com/docs/tutorials/messaging/sui-connect/

Circle's CCTP (for USDC)

https://bridge.sui.io/
https://wormhole.com/docs/tutorials/messaging/sui-connect/

Construindo com Agentes de IA na Sui

Logica do Agent Oráculos e
Automações

Modelos de IA
Externos

Definidos em
contratos inteligentes
Move para ações
on-chain

Conectar feeds de
dados; patrocinar
transações para
automação

Integrar IA off-chain
para tomada de
decisões

Segurança

Usar capacidades do
Move e controles de
acesso

1. Este kit suporta a construção de
agente de IA no Sui

2. Suporta obter saldo da carteira
3. Suporta interagir com múltiplos

protocolos DeFi do Sui

Caso de Uso do
Agente de IA: Kit de
Agente de IA Nimbus

https://agent.getnimbus.io/

https://agent.getnimbus.io/

Exercícios Práticos

Exemplo de AI agent KIT:
https://docs.getnimbus.io/sui-ai-agent/introduction

SDK: https://www.npmjs.com/package/@flowx-finance/sdk

Construindo Agente de IA Simples para rastrear saldo da
carteira

Obrigado

